Abstract

By assimilating shape memory alloys with mathematical multifractal-type objects, a theoretical model based on Scale Relativity Theory in the form of The Multifractal Theory of Motion, in order to explain the mechanical behavior of such material, is proposed. The model is validated by analyzing the mechanical behavior of Cu-Al-Zn shape memory alloy with various chemical compositions. More precisely, the multifractal tunnel effect can "mime" the mechanical hysteresis of such a material, a situation in which a direct correspondence for several mechanical properties of Cu-Al-Zn is highlighted (the chemical composition can be correlated with the shapes of the curves controlled through the multifractality degree, while the areas delimited by the same curves can be correlated with the multifractal specific potential, as a measure of the mechanical memory degree).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.