Abstract

The dependence of the leakage current in 1.3-/spl mu/m InGaAsP buried heterostructure (BH) lasers with p-n-p-n current blocking layers on well number, mesa width, and carrier density has been analyzed using a two-dimensional device simulator and compared with the electroluminescence (EL) emitted from InP layers. The analysis of the minority carrier flow reveals that the electron current flowing through the p-n-p-n current blocking layers is the dominant component of the leakage current. The measured EL intensity has two peaks at both sides of the n-blocking layer apart from the active layer. The EL intensity decreases with increasing well number and carrier density of the p-blocking layer, and increases with increasing mesa width. These results are consistent with the simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.