Abstract

We investigate the depth of field (DoF) enhancing capacity of binary annular phase masks embedded in panchromatic imaging systems. We first demonstrate with numerical simulations and real-world imaging experiments that phase masks optimized for monochromatic illumination are somewhat robust to their use under wide spectrum illumination: they provide images that are slightly less sharp but less affected by deconvolution artifacts thanks to spectral averaging. Then, we show that masks specifically optimized for wide spectrum illumination perform better under this type of illumination than monochromatically optimized phase masks under monochromatic illumination, especially when the targeted DoF range is large. This interesting effect comes from the fact that deconvolution artifacts are significantly reduced by wide spectrum illumination. These results show that it is useful to take into account the illumination spectrum together with the scene characteristics and the targeted DoF range for effective co-design of DoF enhancing imaging systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call