Abstract

The safe operating area (SOA) of 1200-V SiC bipolar junction transistor (BJT) is investigated by experiments and simulations. The SiC BJT is free of the second breakdown even under the turn-off power density of 3.7 MW/cm2. The theoretical boundary of reverse-biased SOA caused by the false turn-on is obtained by simulations. The short-circuit capability of the 1200-V SiC BJT is also investigated theoretically and experimentally. Self-heating is considered by the nonisothermal simulation, and 1800-K maximum local temperature is the simulated critical temperature of device failure. The surface condition is very critical for short-circuit capability. From simulations, when the interface trap density increases, the critical temperature decreases. This is believed to be the reason why the experimental results show much shorter short-circuit withstand time than the simulation showed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.