Abstract

In this paper, we develop a numerical method for the solutions of mixed type Volterra–Fredholm fractional integral equations (FIEs). The proposed algorithm is based on Haar wavelet collocation technique (HWCT). Under certain conditions, we prove the existence and uniqueness of the solution. Also, some stability results are given of Hyers–Ulam (H–U) type. With the help of the HWCT, the considered problem is transformed into a system of algebraic equations which is then solved for the required results by using Gauss elimination algorithm. Some numerical examples for convergence of the proposed technique are taken from the literature. Maximum absolute and root mean square errors are calculated for different collocation points (CPs). The results show that the HWCT is an effective method for solving FIEs. The convergence rate for different CPS is also calculated, which is nearly equal to [Formula: see text].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.