Abstract

This paper presents an optimum system configuration analysis for a flash tank cycle (FTC) based two-stage compression air source heat pump system using a developed theoretical model with lumped parameter method. The analysis is carried out with respect to the thermal conductance allocation of total heat-exchanger inventory (condenser and evaporator) as well as the volume ratio of low-pressure compressor to high-pressure compressor in the system. The analysis results indicate that the heating coefficient of performance (COP) of the heat pump system can be maximized by optimally allocating the thermal conductance inventory of the two heat exchangers. Moreover, there also exists an optimal compressor volumetric displacement ratio, corresponding to the optimum system COP, when the cooling capacity of system is specified. The effects of main operation parameters on the configuration parameters and optimal performances have been discussed. The obtained results may provide some guide for the FTC based air source heat pump system optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.