Abstract

One of the main objectives of the smart grid initiative is to enable bulk power transmission over long distance, with reduced transmission losses. Besides the traditional high-voltage alternating current (HVAC) transmission, with the advancement in power electronics, high-voltage direct current (HVDC) transmission is increasingly becoming important. One of the main factors impacting the transmission line parameters and the losses is the length of the transmission line (overhead). In this paper, a concept of tuned high-voltage AC line is presented for long (> 250 km) transmission line. A tuned line is where the receiving-end voltage and current are numerically equal to the corresponding sending-end values. This paper presents the detailed theoretical analysis of the tuned HVAC line, suggesting adaptation of the transmission frequency as per the length of the line. The simulation of a tuned HVAC line is performed using the PSCAD/EMTDC. Simulation results for two different line lengths, substantiate the theoretical analysis of reducing the reactive power absorbed in the line, while increasing the active power transmission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.