Abstract

The dynamic transient responses of a simply-supported Timoshenko beam subjected to an impact force are investigated by two theoretical approaches – ray and normal mode methods. The mathematical methodology proposed in this study for the ray method enable us to construct the solution for the interior source problem and to extend to solve the complicated problem for the multi span of the Timoshenko beam. Numerical results based on these two approaches are compared. The comparison in this study indicates that the normal mode method is more computationally efficient than the ray method except for very short time after the impact. The long-time transient responses are easily calculated using the normal mode method. It is shown that the average long-time transient response converges to the corresponding static value. The Timoshenko beam theory is more accurate than the Bernoulli–Euler beam theory because it includes shear and rotary inertia. This study also provides the slender ratio for which the Bernoulli–Euler beam can be used for the transient-response analysis of the displacement. Moreover, the resonant frequencies obtained from finite element calculation based on the three-dimensional model are compared with the results calculated using the Timoshenko beam and Bernoulli–Euler beam theories. It is noted in this study that the resonant frequency can be accurately determined by the Timoshenko beam theory if the slender ratio is larger than 100, and by the Bernoulli–Euler beam theory if the slender ratio is larger than 400.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.