Abstract

In this paper, the underwater implementation of the incremental adaptive networks is proposed based on the visible light communication technology. The underwater distance between transmitter and receiver nodes and the salinity and temperature levels of the considered water determines the stochastical properties of the underwater link that is modeled with the Log-normal distribution. The incremental network performance can be expressed with the excess mean square error and mean square deviation values and we used them in this paper for our theoretical analysis. Our findings showed that the distances between the nodes must not be more than 10 m or the incremental network will diverge from its estimation goal. The network performance is analyzed through multiple link distances and the results are presented with several simulations. The simulation results are devised in order to elaborate the effects of the underwater turbulent links on the performances of estimating adaptive network. Also, the impacts of different salinity and temperature levels are analyzed theoretically and the results are compared with the simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.