Abstract
The density functional theory calculations with hybrid B3LYP/6-31G(d,p) basis sets have been used to examine the structural and electronic properties of boron nitride (BN) diamantane interacted with the drug hydroxyurea (HU) as an anticancer drug. The findings have been shown that there is a decrease in the total energy after combining the drug with diamantane. The energy levels of HOMO and LUMO analyses indicate that the value of HOMO energy increased slightly, while the value of LUMO energy decreased significantly in these systems in the HU/BN diamantane. In addition, the decreasing of the energy gap between HOMO and LUMO confirms a strong bond between the drug hydroxyurea and BN diamantane. Finally, the drug's stability and reactivity with BN diamantane were investigated by measuring chemical reaction characteristics such as chemical potential, electron affinity, global hardness, and electrophilicity index. As a result, the nanocrystal of BN diamantane can be considered a vector for the delivery of anticancer drugs within biological systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.