Abstract

The origin of the collinear antiferromagnetic magnetic structure of Ni(3)TeO(6) below 52 K was analyzed by calculating its spin exchanges on the basis of density functional calculations, and the cause for the parallelc-spin orientation found for this magnetic structure by calculating the spin-orbit coupling and magnetic dipole-dipole interaction energies. The calculated exchanges correctly predict the observed magnetic structure below 52 K, and lead practically to no spin frustration. The perpendicularc- and parallelc-spin orientations are predicted by the spin-orbit coupling and the magnetic dipole-dipole interactions, respectively. However, the magnetic dipole-dipole interactions are stronger than the spin-orbit coupling interactions, and hence are responsible for the spin orientation observed for Ni(3)TeO(6).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.