Abstract
The performance of a gas-lubricated micro spherical spiral groove bearing (MSSGB) with slip flow effect is investigated. A modified Reynolds equation incorporated with Barber's first-order slip flow model is proposed to investigate the flow characteristics of gas in MSSGBs. Parameter transformation and oblique coordinate transformation are applied to eliminate the curve effect on the calculation domain. An improved finite difference method (FDM) based on Green's formula is used to solve the Reynolds equation. The perturbation method is adopted to determine the dynamic coefficients. The effects of slip flow and bearing parameters, including the groove depths, rotor speeds, and eccentricity ratios, on the bearing characteristics are investigated and discussed. Prediction results show that the slip flow effect on MSSGB performance is significant. Moreover, the groove depth at micro clearance has a crucial influence on bearing performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.