Abstract
Using a recently proposed orbital deletion procedure and the block-localized wavefunction method, the rotational barriers in H2BNH2 and H2BPH2 are analyzed in terms of conjugation, hyperconjugation, steric effect and pyramidalization. With the zero-point energy corrections, the π-binding strengths in the planar H2BNH2 and H2BPH2 are both around 20 kcal/mol at the HF level using the 6-311+G** basis set. With the deactivation of the π atomic orbitals on the boron atom and the evolution from a planar structure to a 90°-twisted structure, the steric repulsion between the B‐H and the N‐H or P‐H is relieved and moreover, the negative hyperconjugation from the lone electron pair or pairs on the nitrogen or phosphorus atoms to the antibonding orbital χ* B H2 of the BH2 group stabilizes the twisted structure by 7.4(8.8) or 4.0(5.0) kcal/mol at the HF/6-31G*(6-311+G**) level. However, the repulsive interaction between the lone pair(s) and the two BH σ bonds is so prominent that the overall steric effect contributes 20.3(22.9) and 19.3(19.8) kcal/mol to the rotational barriers in H2BNH2 and H2BPH2 with the 6-31G*(6-311+G**) basis set. The present techniques and analyses may also give some clues to justify the parameterization in the empirical molecular mechanics methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.