Abstract

AbstractA well-optimized design of an ion cyclotron resonance heating (ICRH) antenna is very important for steady-state plasma heating with high radio frequency (RF) power of several tens of megawatts. However, a sharp decrease in the coupling RF power because of impedance mismatch of ICRH system is an issue that must be resolved for present-day fusion reactors and International Thermonuclear Experimental Reactor. This paper has theoretically analyzed the ICRH antenna's impedance matching for ELMy plasmas on experimental advanced superconducting tokamak (EAST) by the transmission line theory. The results indicate that judicious choice of the optimal feeder location is found useful for adjustable capacitors' tolerance to the variations of the antenna input impedance during edge-localized mode (ELM) discharge, which is expected to be good for the design of ICRH antenna system and for real-time feedback control during ELM discharge on EAST.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.