Abstract
The hydrogen-bonded interactions in the simple (HNZ)2 dimers, with Z = O and S, were investigated using quantum chemical calculations with the second-order Møller–Plesset perturbation (MP2), coupled-cluster with single, double (CCSD), and triple excitations (CCSD(T)) methods in conjunction with the 6-311++G(2d,2p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets. Six-membered cyclic structures were found to be stable complexes for the dimers (HNO)2, (HNS)2, and (HNO–HNS). The pair (HNS)2 has the largest complexation energy (–11 kJ/mol), and (HNO)2 the smallest one (–9 kJ/mol). A bond length contraction and a frequency blue shift of the N–H bond simultaneously occur upon hydrogen bond formation of the N–H···S type, which has rarely been observed before. The stronger the intramolecular hyperconjugation and the lower the polarization of the X–H bond involved as proton donor in the hydrogen bond, the more predominant is the formation of a blue-shifting hydrogen bond.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.