Abstract
Starting from the special structure of photonic crystal fiber (PCF), the heat dissipation model of a PCF laser is constructed. Based on the heat dissipation model, the temperature distributions along the radial and axial directions of the PCF (DC-Yb-17040) for forward pump of 200 W and two-end pump of 100 W each side are calculated numerically by using the finite element method (FEM). The results show that the temperature distribution for two-end pump mode is more even than that for forward pump mode and the maximum temperature in the fiber decreases by 178.16 °C. With the thermal power in fiber core being assumed to be fixed, the effects of the core radius, outer cladding radius, and air-clad width on the temperature distribution along the fiber are analyzed numerically. The results show that the changing of core radius only affects the temperature in core region slightly and the decreasing of air-clad width decreases the temperature in inner cladding and core regions effectively. Meanwhile, the temperature of the whole fiber can be decreased by increasing the cladding radius.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Optik - International Journal for Light and Electron Optics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.