Abstract

The fiber pullout and pushout tests have been analyzed to predict the load‐displacement behavior in terms of fiber/matrix interface parameters. The effects of residual axial strain in the fiber and fiber surface topography were included. The residual axial strain was found to be a significant parameter. It is shown that the interface failure can be progressive or catastrophic. In the case of a progressive failure of the interface, the load‐displacement curve is nonlinear. The portion of the curve from above the first nonlinearity to near the peak load can be predicted in terms of parameters of the interface, viz., the friction coefficient, the radial stress at the interface, the fracture toughness of the interface, and the residual axial strain in the fiber. Values for these parameters can be obtained from a single loaddeflection curve. The peak load and load drop, which are usually reported, are found not to be directly relatable to any interface property, since the length of the last portion of the fiber to debond is influenced by end effects and hence not easily predicted. However, for data which describe the peak load as a function of initial embedded length, that factor can be eliminated and the data reduced to yield the relevant interface parameters. In pullout, the peak and friction loads saturate with large specimen thickness. Catastrophic failure is favored when the debond initiation load is high or when residual stress is low. Finally, a methodology to extract interface parameters from experimental data is suggested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call