Abstract
Shape memory polymers (SMPs) can have a large frozen strain but with a very small recovery stiffness in comparison with shape memory metals or ceramics. To provide more deployable stresses for the application of actuators, sandwich beams consisting of a SMP core and two thin metallic skins were considered. The packaging behaviors of two types of SMP sandwich beams, aluminum/SMP/aluminum and steel/SMP/steel, were discussed. Due to the high compliance of SMP core on packaging condition that the testing temperature is above the activation temperature of the material, buckling and post-buckling are the essential deformation mechanisms of SMP sandwich beams under bending. Theoretical solutions were derived in studying such non-linear behaviors, including the initiation of critical buckling, post-buckling response, and final failure modes. Systematic parameter’s analyses, e.g., buckling half-wavelength, amplitude, location of the neutral-strain surface in different packaging curvatures, were also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.