Abstract

The present work is a contribution to understanding the windmilling operation of low-speed fans. Such an operating situation is described in the literature, but the context (mainly windmilling of aero-engines) often involves system dependence in the analysis. Most of the time, only regimes very close to the free-windmilling are considered. A wider range is analyzed in the present study, since the context is the examination of the energy recovery potential of fans. It aims at detailing the isolated contribution of the rotor, which is the only element exchanging energy with the flow. Other elements of the system (including the stator) can be considered as loss generators and be treated as such in an integrated approach. The evolution of the flow is described by the use of theoretical and experimental data. A theoretical model is derived to predict the operating trajectories of the rotor in two characteristic diagrams. A scenario is proposed, detailing the local evolution of the flow when a gradual progression toward free and load-controlled windmilling operation is imposed. An experimental campaign exerted on two low-speed fans aims at the analysis of both the local and global aspects of the performance, for validation. From a global point of view, the continuity of the operating trajectory is predicted and observed across the boundary between the quadrants of the diagrams. The flow coefficient value for the free-windmilling operation is fairly well predicted. From a local point of view, the local co-existence of compressor and turbine operating modes along the blade span is observed as previously reported. It is further demonstrated here that this configuration is not exclusive to free-windmilling operation and occurs inside a range that can be theoretically predicted. It is shown that for a given geometry, this local topology strongly depends on the value of the flow coefficient and is very sensitive to the inlet spanwise velocity distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.