Abstract

Surface-plasmon-polariton (SPP) resonators consisting of metal strips in free space, and gap plasmon polariton resonators consisting of a metal strip close to either a block of metal or a metal surface, are studied as optical resonators. The analysis is performed using the Green's function surface integral equation method. For strips in free space, we show how the scattering resonances can be understood, by thinking of the strips as optical resonators for short-range SPPs. The two gap resonator configurations, strip-block and strip-surface, have different structure terminations as the width of the strip and the block are identical whereas the surface is infinite. In the strip-surface configuration, the scattering resonances are broader and red-shifted, compared to the strip-block configuration. This is explained as a consequence of the effective length of the resonator being larger in the strip-surface configuration. By varying the gap size, we study the transition from a SPP resonator to a gap plasmon polariton resonator. In the strip-surface configuration, light can be scattered into both out-of-plane propagating waves and into SPPs that propagate along the surface. For small gaps of a few tens of nanometers, a large enhancement in the scattering cross section is seen due to strong scattering into SPPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.