Abstract

The important properties required for SAW substrates are a large electromechanical coupling coefficient (k2), small temperature coefficient of frequency (TCF), low propagation loss, etc. At present, there is no single crystal which satisfies all the above mentioned requirements. Recently the efforts to develop new SAW substrate with large k2 and small TCF have investigated. New KNbO8 single crystal substrates with extremely large electromechanical coupling coefficient (k2=53%) and zero TCF around room temperature are developed. LiNbO3 has good properties as a SAW substrate with a large size. Unfortunately LiNbO3 possesses the defect of large values of TCF. In this paper, SAW bonded composite substrates with a large k2, small TCF, low propagation loss and no dispersion using conventional bonders are investigated theoretically and experimentally. The propagation characteristics of SAW in the strained piezoelectric crystal using the higher-order elasticity theory have been analyzed. The theoretical results show zero TCF on LiNbO3/SiO2 substrates. At room temperature a relatively thin LiNbO3 is firmly bonded to a glass material with a small thermal expansion coefficient by using ultraviolet rays to stiffen the bonder. The experimental results of LiNbO3/glass substrate showed a TCF of -19 ppm/°C. The propagation properties were almost the same as those of the single crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.