Abstract

We present the published data of ALICE at mid-rapidity region ([Formula: see text]) to study the [Formula: see text] spectra of light-flavor hadrons in different charged-particle multiplicities ([Formula: see text]) for [Formula: see text] collisions at [Formula: see text] TeV. We parametrize the [Formula: see text] spectra of different hadrons such as pion ([Formula: see text]), kaon ([Formula: see text]), [Formula: see text], [Formula: see text] ([Formula: see text]), [Formula: see text], proton ([Formula: see text]), lambda ([Formula: see text]), cascade ([Formula: see text]) and omega ([Formula: see text]) using Tsallis distribution. We perform this analysis by considering both differential and single freeze-out scenarios. In the differential freeze-out scenario, both the Tsallis parameters [Formula: see text] and [Formula: see text] increase with charged multiplicities for most of the particles. This implies that the multipartonic interactions increase the multiplicities in [Formula: see text] collisions and it brings the system towards thermal equilibrium. Here we observe that both [Formula: see text] and [Formula: see text] have different trends with different masses of particles. The parameters [Formula: see text] and [Formula: see text] are higher for massive particles (except for multistrange baryons) in comparison to lighter ones, which supports the differential freeze-out scenario and suggests that massive particles freeze-out earlier from the system. In the case of single freeze-out scenario, the value of parameter [Formula: see text] has a little variation with multiplicity and the parameter [Formula: see text] increases with multiplicity. This implies that the degree of thermalization remains similar for the events of different multiplicity classes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.