Abstract

Microtubules are cytoskeleton multifilament proteins that support many fundamental biological processes such as cell division, cellular transport, and motility. They can be viewed as dynamic polymers that function in nonequilibrium conditions stimulated by hydrolysis of GTP (guanosine triphosphate) molecules bound to their monomers. We present a theoretical description of microtubule dynamics based on discrete-state stochastic models that explicitly takes into account all relevant biochemical transitions. In contrast to previous theoretical analysis, a more realistic physical-chemical description of GTP hydrolysis is presented, in which the hydrolysis rate at a given monomer depends on the chemical composition of the neighboring monomers. This dependence naturally leads to a cooperativity in the hydrolysis. It is found that this cooperativity significantly influences all dynamic properties of microtubules. It is suggested that the dynamic instability in cytoskeleton proteins might be observed only for weak cooperativity, while the strong cooperativity in hydrolysis suppresses the dynamic instability. The presented microscopic analysis is compared with existing phenomenological descriptions of hydrolysis processes. Our analytical calculations, supported by computer Monte Carlo simulations, are also compared with available experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.