Abstract

A theoretical analysis of nanoscale metallic hole filled with a dielectric material is presented. The dispersion characteristics of the guided modes of a dielectric-filled metallic nanohole show interesting characteristics such as negative dispersion which is not normally observed in air-filled structures. Moreover, the material dispersion, taken fully into consideration, is shown to have a significant effect on the modal dispersion of guided modes, specially, at visible range of frequencies. The analysis is carried out using a full vectorial finite element method which can accurately detect the propagation properties of the structure under investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.