Abstract

As a novel learning paradigm, label distribution learning (LDL) explicitly models label ambiguity with the definition of label description degree. Although lots of work has been done to deal with real-world applications, theoretical results on LDL remain unexplored. In this paper, we rethink LDL from theoretical aspects, towards analyzing learnability of LDL. Firstly, risk bounds for three representative LDL algorithms (AA-kNN, AA-BP and SA-ME) are provided. For AA-kNN, Lipschitzness of the label distribution function is assumed to bound the risk, and for AA-BP and SA-ME, rademacher complexity is utilized to give data-dependent risk bounds. Secondly, a generalized plug-in decision theorem is proposed to understand the relation between LDL and classification, uncovering that approximation to the conditional probability distribution function in absolute loss guarantees approaching to the optimal classifier, and also data-dependent error probability bounds are presented for the corresponding LDL algorithms to perform classification. As far as we know, this is perhaps the first research on theory of LDL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.