Abstract

The kinetic energy of ions in dielectric barrier discharge plasmas are analysed theoretically using the model of binary collisions between ions and gas molecules. Langevin equation for ions in other gases, Blanc law for ions in mixed gases, and the two-temperature model for ions at higher reduced field are used to determine the ion mobility. The kinetic energies of ions in CH4 + Ar(He) dielectric barrier discharge plasma at a fixed total gas pressure and various Ar (He) concentrations are calculated. It is found that with increasing Ar (He) concentration in CH4 + Ar (He) from 20% to 83%, the CH4+ kinetic energy increases from 69.6 (43.9) to 92.1 (128.5) eV, while the Ar+ (He+) kinetic energy decreases from 97 (145.2) to 78.8 (75.5) eV. The increase of CH4+ kinetic energy is responsible for the increase of hardness of diamond-like carbon films deposited by CH4 + Ar (He) dielectric barrier discharge without bias voltage over substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.