Abstract

A direct liquid fuel injection/variable volume reactor integrated with a hydrogen selective membrane (CHAMP-DDIR) has been recently shown to be a promising new concept for hydrogen production in portable and distributed applications. The CHAMP-DDIR reactor performance has been analyzed using a simplified transport model with which conditions for maximum performance, e.g. highest volumetric power density, were identified. A prototype reactor demonstrated the ability to realize performance improvement, while also indicating a need for more a rigorous model for accurate exploration of the design and operation space. In this paper, we present a comprehensive reactor model which carefully considers the effects of heat and mass transfer, including rigorous treatment of multi-component species transport. The model is validated against experimental results through comparison of predicted and measured hydrogen production rate, reactor pressure, and temperature. The experimentally validated model is used to identify the relationship between CHAMP-DDIR design and operating parameters and the rate-limiting processes that govern reactor output. In addition, effects of heat and mass transfer limitations on CHAMP-DDIR performance are investigated by comparing the predictions among multiple cases with increasing level of complexity used for modeling the transport phenomena within the reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.