Abstract

A planar photonic crystal waveguide based on the semiconductor-on-insulator (SOI) materials system is analyzed theoretically. Two-dimensional (2-D) calculations and comparison with dispersion relations for the media above and below the finite-height waveguide are used to obtain design guidelines. Three-dimensional (3-D) calculations are given for the dispersion relations and field profiles. The field profiles obtained using 2-D and 3-D calculations are qualitatively similar. However, we find that compared with 2-D calculations, the frequencies of the guided modes are shifted and the number of guided modes changes. The theoretically predicted frequency intervals, where the waveguide supports leakage-free guidance of light, are compared with an experimental measurement for propagation losses. Two out of three frequency intervals coincide with low-measured propagation losses. The poor guidance of light for the third frequency interval is explained theoretically by investigating the vertical localization of the guided modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.