Abstract
In this paper, the theoretical analysis for the hybrid performance of externally pressurized foil bearings with a hollow porous shaft is described. In the analysis, in order to save computation time and to improve the convergency of solutions, the two-dimensional modified Reynolds equation considering the added flow through hollow porous shaft is reduced to the ordinary differential equation by expanding the film pressure to the Fourier series with respect to the axial coordinate. The reduced Reynolds equation and the equilibrium equation for the perfectly flexible foil are solved iteratively by the finite element technique. The numerical solutions for the pressure and film thickness distributions between the foil and the shaft are obtained for a wide range of bearing width-to-diameter ratio under the various combinations of dimensionless supply pressure, dimensionless permeability of porous shaft and dimensionless wrap angle of foil, and the hybrid performance of foil bearings are examined theoretically. It is found from the numerical results that the bearing width has the significant effect on the pressure and film thickness distributions between the foil and the shaft.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.