Abstract

We present a theoretical study of electron transport through a variety of organic molecules. The analysis uses the Landauer formalism in combination with complex bandstructure and projected densities of states calculations to reveal the main aspects of coherent electronic transport through alkanes, benzene-dithiol, and phenylene-ethynylene oligomers. We examine the dependence of the current on molecule length, the effects of molecule-molecule interactions from film packing, differences in contact geometry, and the influence of phenyl ring rotation on the conductances of phenylene-ethynylene oligomers such as 1,4-bis-phenylethynyl-benzene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.