Abstract

In conclusion, let us note the principal results of the calculation. 1. On a clean Ni(100) surface, only molecular adsorption of water is realized. Partial dissociation of H2O is thermodynamically allowed process; however, dissociation of water is impossible because of kinetic limitations. 2. Modification of the nickel surface by oxygen stabilizes the donor-acceptor pair (H2O/O) on the surface and removes the kinetic limitation in decomposition of water, through a substantial reduction of the activation energy of dissociation. 3. The promoting role of oxygen is manifested in an increase in the nonuniformity of electron density on the nickel surface in the vicinity of the [Ni]−OH2 bond, which makes it possible to open up a new channel of the reaction in which a high degree of energy compensation in the water dissociation reaction is possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.