Abstract

A terahertz photoconductive antenna placed on the back side of a semiconductor slab with and without a compact cylindrical semiconductor microlens on the front side is studied theoretically. The antenna is operated as a photomixer giving narrowband radiation at 1 THz. Radiation patterns and emitted powers are found to oscillate with slab thickness as a consequence of multiple-reflection interference. It is further shown that an antireflection layer on the lens may eliminate these oscillations to a large extent. In the absence of a lens, most of the radiation is trapped inside the semiconductor slab, and the radiation pattern is far from that of a pencil-beam. Both light trapping and radiation patterns are shown to be significantly improved by a very compact lens with a size smaller than a cubic wavelength. The improvements on outcoupling of radiation in a predominantly forward direction versus lens radius and height are mapped out. The calculated outcoupling efficiency of the antenna-lens system takes into account the Purcell effect and radiation trapped in the semiconductor slab. The antenna-lens system is modeled rigorously by using the Green’s function volume integral equation method in a form that exploits cylindrical symmetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.