Abstract

Force calculation, stress, and fatigue analysis are major issues in machine design to ensure the life expectancy of sprocket-gear power transmission systems. Therefore, this study aims to conduct a theoretical analysis of bending stresses to select the size and component materials for the power transmission part of a Chinese cabbage collector that is under development. The three-dimensional models of a 14T sprocket gear for two steel materials, SCr420H and SM45C, were generated, employing commercial software. The bending stresses, deformations, and fatigue damages of the designed sprocket were determined by varying the face width and pressure angle of the sprocket teeth. The Lewis and American Gear Manufacturer Association (AGMA) equations were used to calculate the bending stresses. The calculated bending-stress values were compared with the stress values obtained from finite-element analysis (FEA). The maximum stress values on the gear teeth were 650.07, 826.23, and 840.77 MPa for a 20° pressure angle by using the Lewis, AGMA, and FEA methods, respectively. The simulated maximum stress value was higher than the yield strength of the SM45C steel and lower than the yield strength of the SCr420H steel. In addition, the maximum face width showed the minimum bending stress and fatigue damage for the selected material. Hence, considering the safety factor, the steel material SCr420H was selected with a 4.5-mm face width for designing the power transmission part of the Chinese cabbage collector. The analysis of bending stresses presented in this research can guide the design of a sprocket for the efficient transfer of Chinese cabbages using the proposed Chinese cabbage collector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.