Abstract
Processing a large-scale Synthetic Aperture Radar (SAR) image dataset on a distributed computing infrastructure poses a challenging problem. Large-scale load distribution strategies like multi-installment scheduling (MIS) assume that the size of the result is negligible compared to the input workloads and hence ignore it in their design. Similarly, numerical methods like particle swarm optimization and their variants are not practical for real-time applications, given their run-time complexities. As both the results retrieval and completion time are crucial for SAR image data processing, in this article, we attempt to provide a thorough theoretical analysis of an adaptive MIS that includes the result retrieval phase. We use the periodic nature of the internal installments to keep the strategy simple and fine-tune the last installment to avoid any idle times in the processors. We derive a closed-form solution for the load fractions and hence, the overall processing time, schedule feasibility criteria, and certain other properties that lead to adaptive scheduling. Finally, we validate our theoretical findings through rigorous simulation studies using a loosely connected virtual machines (VMs) topology for the SAR dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parallel and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.