Abstract

The aim of this study is to theoretically analyze the performance and efficiency of a glycerol processing and high-temperature proton exchange membrane fuel cell (HT-PEMFC) integrated system. Glycerol is considered a renewable fuel source for hydrogen production. In comparison with methane, glycerol shows a better performance in terms of high hydrogen production and low possibility to carbon formation. However, the content of CO2 in the reformate gas and its dilution effect as well as the energy required for the glycerol processor should be concerned. When considering the operation of the glycerol processor for HT-PEMFCs, the reformer temperature (TR) has a significant influence on hydrogen content in the reformate gas, whereas the steam-to-carbon ratio (S/C) affects hydrogen production slightly. In addition, the content of CO in the reformate gas satisfies the required constraint for HT-PEMFC operation. The performance and efficiency of the glycerol reforming process and HT-PEMFCs integrated system are evaluated by considering a heat recovery and a water balance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.