Abstract

Driven diffusive systems are important models in nonequilibrium state statistical mechanics. This paper studies an asymmetric exclusion process model with nearest rear neighbor interactions associated with energy. The exact flux expression of the model is obtained by a cluster mean-field method. Based on the flux expression, the properties of the fundamental diagram have been investigated in detail. To probe the energy's influence on the coarsening process of the system, Monte Carlo simulations are carried out to acquire the monotonic phase boundary in energy-density space. Above the phase boundary, the system is inhomogeneous and the normalized residence distribution p(s) is nonmonotonically decreasing. Under the phase boundary, the system is homogeneous and p(s) is monotonically decreasing. Further study comparatively shows that the system has turned into a microscopic inhomogeneous state from a homogeneous state before the system current arrives at maximum, if nearest rear neighbor interactions are strong. Our findings offer insights to deeply understand the dynamic features of nonequilibrium state systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.