Abstract
Machining operations involving complex multivariate parameters are defined by many machining parameters. Correct selection of these parameters is crucial for an efficient and economical cutting operation. The grooving operation required in many cases is one of the most problematic methods in all metal cutting operations, especially in terms of chip control. This paper covers theoretical analysis and mathematical modeling of deformation and stresses of the grooving tool. Cutting forces affecting the service life of the grooving tool were measured by various cutting experiments. Deformation and stresses of grooving tool caused by cutting forces were analyzed by finite element method using Ansys software. In modeling with artificial neural networks (ANN), grooving insert width, cutting speed, feed rate, radial force and primary cutting force are inputs in the model and deformation and stresses of the grooving tool are outputs. An algorithm, which is a Matlab script file, was developed to determine the optimal combination of neural network parameters such as the normalization method, number of hidden neurons, transfer function and training algorithm. The best-fitting set determined by the algorithm developed for the model was achieved with the Levenberg–Marquardt backpropagation algorithm, logistic sigmoid transfer function, nine hidden neurons and normalization method with a scaling factor. The MSE, R2, MAPE values of the ANN model are 2.0327 × 10−6, 0.999992 and 0.379227, respectively. Performance results have shown that the proposed approach can also be used for ANN modeling of machining parameters in other cutting operations other than grooving.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.