Abstract
AbstractMost traditional passive friction dampers are limited to the design of single activated energy dissipation mechanism; therefore, when the seismic intensity is not strong enough to activate the mechanism, traditional friction dampers can only increase stiffness of the structure just like braces; only when the mechanism is activated will the energy dissipation elements perform energy absorption and assist the structure to absorb received seismic energy. The objective of this study is to improve this defect of traditional friction dampers, developing a Multi–Level Friction Damper (MFD) with a two‐stage energy dissipation mechanism, helping building structures (e.g., hospitals, high‐tech plants) reduce the acceleration responses of the superstructure. MFDs are proven to provide more comprehensive protection and have higher energy dissipation benefits than traditional friction dampers by the validation of numerical analysis and shaking table test. The study in turn performed parameter fitting with the results of the numerical simulation analysis and shaking table test, and the experimental results turned out to be satisfactory, validating the accuracy of the theoretical formulas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.