Abstract

Laser-induced interstitial thermotherapy (LITT) has been recently applied to pancreas in animal models for ablation purpose. Assessment of thermal effects due to the laser-pancreatic tissue interaction is a critical factor in validating the procedure feasibility and safety. A mathematical model based on bioheat equation and its experimental assessment was developed. The LITT procedure was performed on 40 ex vivo porcine pancreases, with an Nd:YAG (1064 nm) energy of 1000 J and power from 1.5 up to 10 W conveyed by a quartz optical fiber with 300 μm diameter. Six fiber Bragg grating sensors have been utilized to measure temperature distribution as a function of time at fixed distances from the applicator tip within pancreas undergoing LITT. Simulations and experiments show temperature variations Δ T steeply decreasing with distance from the applicator at higher power values: at 6 W, ∆T > 40 °C at 5 mm and Δ T is approximately equal to 5 °C at 10 mm. Δ T nonlinearly increases with power close to the applicator. Ablated and coagulated tissue volumes have also been measured and experimental results agree with theoretical ones. Despite the absence of data in the current literature on pancreas optical parameters, the model allowed a quite good prediction of thermal effects. The prediction of LITT effects on pancreas is necessary to assess laser dosimetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call