Abstract

Fast and accurate performance analysis techniques are essential in early design space exploration and pre-silicon evaluations, including software eco-system development. In particular, on-chip communication continues to play an increasingly important role as the many-core processors scale up. This paper presents the first performance analysis technique that targets networks-on-chip (NoCs) that employ weighted round-robin (WRR) arbitration. Besides fairness, WRR arbitration provides flexibility in allocating bandwidth proportionally to the importance of the traffic classes, unlike basic round-robin and priority-based arbitration. The proposed approach first estimates the effective service time of the packets in the queue due to WRR arbitration. Then, it uses the effective service time to compute the average waiting time of the packets. Next, we incorporate a decomposition technique to extend the analytical model to handle NoC of any size. The proposed approach achieves less than 5% error while executing real applications and 10% error under challenging synthetic traffic with different burstiness levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.