Abstract

As a current compensator, we already developed a linear type magnetic flux pump (LTMFP) that is comprised of DC coils, three phase armature coils, an LTS Nb foil and laminated linear slots. The LTMFP produced a homopolar traveling magnetic field with DC bias current and 3-phase armature current and then, a pumping current is generated in the closed superconducting loop. In this study, we have proposed an advanced LTMFP which can easily produce homopolar traveling magnetic field with the combination of a permanent magnet and the AC armature current. Since the permanent magnets have replaced DC coils in the system, its structure and operation are simplified. As well as, the heating loss of the advanced LTMFP is reduced due to the permanent magnet compared with the LTMFP. From this reason, we confirmed that the advanced LTMFP has more simplified and efficient operation compared with already developed magnetic flux pumps. This paper describes the structure and operating principle of the advanced LTMFP. As well as, the distributions of electromagnetic-thermal analysis of the LTS Nb foil were calculated based on the finite element method (FEM). Thus, in order to realize the homopolar traveling magnetic field, appropriately designing parameters of the combination of AC current and the permanent magnet were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.