Abstract

Ab initio calculation of electronic excitation energies with chemical accuracy (ca. 1 kcal·mol-1 or 0.043 eV with respect to experiment) is a long-standing challenge in electronic structure theory. Indeed, the most advanced theories can, in practice, only be used to estimate vertical transition energies that cannot be measured experimentally, whereas the calculation of 0-0 energies requires excited-state structures and vibrations for both the ground and excited states, which drastically restrains the number of applicable methods. In this Letter, we present a composite computational protocol able to deliver chemically accurate theoretical 0-0 energies, with a mean absolute deviation of 0.018 eV for a set of 35 singlet valence states. Such accuracy, achievable for the valence states of small- and medium-sized molecules only, allows pinpointing questionable experimental assignments with very high confidence and constitutes a step toward quantitative prediction of excited-state properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.