Abstract

In the present paper, theoretic investigations of polarisation vector precession trajectories represented by a macro spin in ferromagnetic films with in-plane uniaxial anisotropy were realised. For this purpose, the Landau–Lifschitz–Gilbert differential equation (LLG) in combination with the Maxwell equations were solved for three dimensions by considering a linear progression of the magnetisation or polarisation with an external field. The frequency and time dependent polarisation trajectories illustrate how a magnetic moment precesses if effective damping and eddy-currents impacts its motion. For computation, typical parameter values like the saturation polarisation Js=μ0·Ms=1.4T and in-plane uniaxial anisotropy μ0·Hu=4.5mT were employed. The main focus of simulation was on the variation of the effective damping parameter αeff between 0.01 and 0.05 and ferromagnetic film thickness tm between 200nm and 1200nm. The frequency-dependent calculations were carried out between 50MHz and 6GHz. The time-dependent simulations were done for a duration between 5 and 30ns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.