Abstract
Rigid E-unification is the problem of unifying two expressions modulo a set of equations, with the assumption that every variable denotes exactly one term (rigid semantics). This form of unification was originally developed as an approach to integrate equational reasoning in tableau-like proof procedures, and studied extensively in the late 80 s and 90s. However, the fact that simultaneous rigid E-unification is undecidable has limited practical adoption, and to the best of our knowledge there is no tableau-based theorem prover that uses rigid E-unification. We introduce simultaneous bounded rigid E-unification (BREU), a new version of rigid E-unification that is bounded in the sense that variables only represent terms from finite domains. We show that (simultaneous) BREU is NP-complete, outline how BREU problems can be encoded as propositional SAT-problems, and use BREU to introduce a sound and complete sequent calculus for first-order logic with equality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.