Abstract

Author(s): Macchiavelli, AO; Crawford, HL; Campbell, CM; Clark, RM; Cromaz, M; Fallon, P; Jones, MD; Lee, IY; Salathe, M; Brown, BA; Poves, A | Abstract: Background: Competing interpretations of the results of a Mg30(t,p)Mg32 measurement populating the ground state and 02+ state in Mg32, both limited to a two-state mixing description, have left an open question regarding the nature of the Mg32 ground state. Purpose: Inspired by recent shell-model calculations, we explore the possibility of a consistent interpretation of the available data for the low-lying 0+ states in Mg32 by expanding the description from two-level to three-level mixing. Methods: A phenomenological three-level mixing model of unperturbed 0p0h, 2p2h, and 4p4h states is applied to describe both the excitation energies in Mg32 and the transfer reaction cross sections. Results: Within this approach, self-consistent solutions exist that provide good agreement with the available experimental information obtained from the Mg30(t,p)Mg32 reaction. Conclusion: The inclusion of the third state, namely the 4p4h configuration, resolves the puzzle that results from a two-levelmodel interpretation of the same data. In our analysis, the Mg32 ground state emerges naturally as dominated by intruder (2p2h and 4p4h) configurations, at the 95% level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.