Abstract

We examine the Kepler light curves of V1504 Cyg and V344 Lyr, encompassing ~736 d at 1 min cadence. During this span each system exhibited ~64-65 outbursts, including six superoutbursts. We find that, in both systems, the normal outbursts between two superoutbursts increase in duration over time by a factor ~1.2-1.9, and then reset to a small value after the following superoutburst. In both systems the trend of quiescent intervals between normal outbursts is to increase to a local maximum about half way through the supercycle - the interval from one superoutburst to the next - and then to decrease back to a small value by the time of the next superoutburst. This is inconsistent with Osaki's thermal-tidal model, which predicts a monotonic increase in the quiescent intervals between normal outbursts during a supercycle. Also, most of the normal outbursts have an asymmetric, fast-rise/slower-decline shape, consistent with outbursts triggered at large radii. The exponential rate of decay of the plateau phase of the superoutbursts is 8 d/mag for V1504 Cyg and 12 d/mag for V344 Lyr. This time scale gives a direct measure of the viscous time scale in the outer accretion disk given the expectation that the entire disk is in the hot, viscous state during superoutburst. The resulting constraint on the Shakura-Sunyaev parameter, alpha_{hot} ~ 0.1, is consistent with the value inferred from the fast dwarf nova decays. By looking at the slow decay rate for superoutbursts, which occur in systems below the period gap, in combination with the slow decay rate in one long outburst above the period gap (in U Gem), we infer a steep dependence of the decay rate on orbital period for long outbursts. This implies a steep dependence of alpha_{cold} on orbital period, consistent with tidal torquing as being the dominant angular momentum transport mechanism in quiescent disks in interacting binary systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.