Abstract
The human cytochrome P450 (CYP) isoforms catalyzing the oxidation metabolism of desglymidodrine (DMAE), an active metabolite of midodrine, were studied. Recombinant human CYP2D6, 1A2 and 2C19 exhibited appreciable catalytic activity with respect to the 5'-O-demethylation of DMAE. The O-demethylase activity by the recombinant CYP2D6 was much higher than that of other CYP isoforms. Quinidine (a selective inhibitor of CYP2D6) inhibited the O-demethylation of DMAE in pooled human microsomes by 86%, while selective inhibitors for other forms of CYP did not show any appreciable effect. Although the activity of CYP2D6 was almost negligible in the PM microsomes, the O-demethylase activity of DMAE was found to be maintained by about 25% of the pooled microsomes. Furafylline (a selective inhibitor of CYP1A2) inhibited the M-2 formation in the PM microsomes by 57%. The treatment of pooled microsomes with an antibody against CYP2D6 inhibited the formation of M-2 by about 75%, whereas that of the PM microsomes did not show drastic inhibition. In contrast, the antibody against CYP1A2 suppressed the activity by 40 to 50% in the PM microsomes. These findings suggest that CYP2D6 have the highest catalytic activity of DMAE 5'-O-demethylation in human liver microsomes, followed by CYP1A2 to a small extent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Drug Metabolism and Pharmacokinetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.