Abstract

Theiler's murine encephalomyelitis virus is a widely used model to study the initiation and progression of multiple sclerosis. Many researchers have used this model to investigate how the immune system and genetic factors contribute to the disease process. Current research has highlighted the importance of cytotoxic CD8 T cells and specific major histocompatibility complex (MHC) class I alleles. Our lab has adopted this concept to create a novel mouse model to study the mechanism of blood-brain barrier (BBB) disruption, an integral feature of numerous neurological disorders. We have demonstrated that epitope-specific CD8 T cells cause disruption of the tight junction architecture and ensuing CNS vascular permeability in the absence of neutrophil support. This CD8 T cell-initiated BBB disruption is dependent on perforin expression. We have also elucidated a potential role for hematopoietic factors in this process. Despite having identical MHC class I molecules, similar inflammation in the CNS, and equivalent ability to utilize perforin, C57BL/6 mice are highly susceptible to this condition, while 129 SvIm mice are resistant. This susceptibility is transferable with the bone marrow compartment. These findings led us to conduct a comprehensive genetic analysis which has revealed a list of candidate genes implicated in regulating traits associated with BBB disruption. Future studies will continue to define the underlying molecular mechanism of CD8 T cell-initiated BBB disruption and may assist in the development of potential therapeutic approaches to ameliorate pathology associated with BBB disruption in neurological disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.