Abstract

The Fermi Gamma-ray Space Telescope reveals a diffuse inverse Compton (IC) signal in the inner Galaxy with a similar spatial morphology to the microwave haze observed by WMAP, supporting the synchrotron interpretation of the microwave signal. Using spatial templates, we regress out π0 gammas, as well as IC and bremsstrahlung components associated with known soft-synchrotron counterparts. We find a significant gamma-ray excess toward the Galactic center with a spectrum that is significantly harder than other sky components and is most consistent with IC from a hard population of electrons. The morphology and spectrum are consistent with it being the IC counterpart to the electrons which generate the microwave haze seen at WMAP frequencies. In addition, the implied electron spectrum is hard; electrons accelerated in supernova shocks in the disk which then diffuse a few kpc to the haze region would have a softer spectrum. We describe the full-sky Fermi maps used in this analysis and make them available for download.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.