Abstract

Multiple rare nonsynonymous variants in APC predispose to colorectal adenomas. The mechanisms through which such variants act have been unclear, but it has been proposed that a specific ("just-right") level of beta-catenin signaling is required for colorectal tumorigenesis. This appears to be mediated by selection for APC genotypes that retain one, or rarely two, 20 amino acid beta-catenin downregulating repeats (20AARs). We investigated the mechanism through which the variant p.Glu1317Gln (c.3949G>C) contributes to colorectal tumorigenesis. We compared the patterns of somatic APC mutations in tumors from patients with attenuated familial adenomatous polyposis (AFAP) who did, or did not, coinherit p.Glu1317Gln with their AFAP-causing APC mutations. Only 8.2% (4/49) of tumors carrying p.Glu1317Gln had somatic mutations predicted to result in mutant polypeptides retaining a single 20AAR, compared to 62.1% (36/58) of those which did not carry this variant (P=5.64 x 10(-9)). Furthermore, tumors with p.Glu1317Gln often carried somatic mutations that were unusually early or late (downstream of the second 20AAR) in the APC open reading frame. These data support a novel mechanism in which p.Glu1317Gln in combination with other weak mutant APC alleles (generating polypepetides with zero, two, or three 20AARs) can provide the necessary growth advantage for colorectal tumorigenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.